Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 65
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731873

The supply and control of iron is essential for all cells and vital for many physiological processes. All functions and activities of iron are expressed in conjunction with iron-binding molecules. For example, natural chelators such as transferrin and chelator-iron complexes such as haem play major roles in iron metabolism and human physiology. Similarly, the mainstay treatments of the most common diseases of iron metabolism, namely iron deficiency anaemia and iron overload, involve many iron-chelator complexes and the iron-chelating drugs deferiprone (L1), deferoxamine (DF) and deferasirox. Endogenous chelators such as citric acid and glutathione and exogenous chelators such as ascorbic acid also play important roles in iron metabolism and iron homeostasis. Recent advances in the treatment of iron deficiency anaemia with effective iron complexes such as the ferric iron tri-maltol complex (feraccru or accrufer) and the effective treatment of transfusional iron overload using L1 and L1/DF combinations have decreased associated mortality and morbidity and also improved the quality of life of millions of patients. Many other chelating drugs such as ciclopirox, dexrazoxane and EDTA are used daily by millions of patients in other diseases. Similarly, many other drugs or their metabolites with iron-chelation capacity such as hydroxyurea, tetracyclines, anthracyclines and aspirin, as well as dietary molecules such as gallic acid, caffeic acid, quercetin, ellagic acid, maltol and many other phytochelators, are known to interact with iron and affect iron metabolism and related diseases. Different interactions are also observed in the presence of essential, xenobiotic, diagnostic and theranostic metal ions competing with iron. Clinical trials using L1 in Parkinson's, Alzheimer's and other neurodegenerative diseases, as well as HIV and other infections, cancer, diabetic nephropathy and anaemia of inflammation, highlight the importance of chelation therapy in many other clinical conditions. The proposed use of iron chelators for modulating ferroptosis signifies a new era in the design of new therapeutic chelation strategies in many other diseases. The introduction of artificial intelligence guidance for optimal chelation therapeutic outcomes in personalised medicine is expected to increase further the impact of chelation in medicine, as well as the survival and quality of life of millions of patients with iron metabolic disorders and also other diseases.


Iron Chelating Agents , Iron Overload , Humans , Iron Overload/drug therapy , Iron Overload/metabolism , Iron Chelating Agents/therapeutic use , Iron Chelating Agents/pharmacology , Anemia, Iron-Deficiency/drug therapy , Anemia, Iron-Deficiency/metabolism , Iron/metabolism , Animals , Deferiprone/therapeutic use , Deferiprone/pharmacology
2.
Am J Hematol ; 99(6): 1031-1039, 2024 Jun.
Article En | MEDLINE | ID: mdl-38429922

Patients with sickle cell disease (SCD) and other anemias who receive blood transfusions are at risk of organ damage due to transfusional iron overload. Deferiprone is an iron chelator with a well-established safety and efficacy profile that is indicated for the treatment of transfusional iron overload. Here, we report safety data from the large-scale, retrospective Ferriprox® Total Care Registry, which involved all patients with SCD taking deferiprone following the 2011 approval of deferiprone in the United States through August 2020. A total of 634 patients who had initiated deferiprone treatment were included. The mean (SD) duration of deferiprone exposure in the registry was 1.6 (1.6) years (range 0 to 9.7 years). In the overall patient population (N = 634), 64.7% (n = 410) of patients reported a total of 1885 adverse events (AEs). In subgroup analyses, 54.6% (n = 71) of pediatric patients and 67.3% (n = 339) of adult patients reported AEs. The most common AEs reported in patients receiving deferiprone were sickle cell crisis (22.7%), nausea (12.1%), vomiting (8.7%), abdominal discomfort (5.4%), and fatigue (5.4%). Neutropenia was reported in four (0.6%) patients and severe neutropenia/agranulocytosis (defined as absolute neutrophil count <0.5 × 109/L) was reported in two (0.3%) patients. Of patients with evaluable data, all cases of neutropenia and severe neutropenia/agranulocytosis resolved with deferiprone discontinuation. Results from the nearly 10 years of real-world data collected in the Ferriprox® Total Care Registry demonstrate that deferiprone is safe and well tolerated in patients with SCD or other anemias who have transfusional iron overload.


Anemia, Sickle Cell , Deferiprone , Iron Chelating Agents , Registries , Humans , Deferiprone/therapeutic use , Deferiprone/adverse effects , Anemia, Sickle Cell/drug therapy , Male , Child , Adult , Female , Adolescent , Iron Chelating Agents/therapeutic use , Iron Chelating Agents/adverse effects , Iron Chelating Agents/administration & dosage , Retrospective Studies , Iron Overload/drug therapy , Iron Overload/etiology , Child, Preschool , Young Adult , Middle Aged , Infant
3.
CNS Neurosci Ther ; 30(2): e14607, 2024 02.
Article En | MEDLINE | ID: mdl-38334258

INTRODUCTION: Several studies have reported iron accumulation in the basal ganglia to be associated with the development of Parkinson's Disease (PD). Recently, a few trials have examined the efficacy of using the iron-chelating agent Deferiprone (DFP) for patients with PD. We conducted this meta-analysis to summarize and synthesize evidence from published randomized controlled trials about the efficacy of DFP for PD patients. METHODS: A comprehensive literature search of four electronic databases was performed, spanning until February 2023. Relevant RCTs were selected, and their data were extracted and analyzed using the RevMan software. The primary outcome was the change in the Unified Parkinson's Disease Rating Scale (UPDRS-III). RESULTS: Three RCTs with 431 patients were included in this analysis. DFP did not significantly improve UPDRS-III score compared to placebo (Standardized mean difference -0.06, 95% CI [-0.69, 0.58], low certainty evidence). However, it significantly reduced iron accumulation in the substantia nigra, putamen, and caudate as measured by T2*-weighted MRI (with high certainty evidence). CONCLUSION: Current evidence does not support the use of DFP in PD patients. Future disease-modification trials with better population selection, adjustment for concomitant medications, and long-term follow up are recommended.


Parkinson Disease , Humans , Deferiprone/therapeutic use , Parkinson Disease/diagnostic imaging , Parkinson Disease/drug therapy , Iron Chelating Agents/therapeutic use , Iron , Substantia Nigra
4.
BMJ Open ; 14(2): e077342, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-38331857

INTRODUCTION: Despite the improvement in medical management, many patients with transfusion-dependent ß-thalassaemia die prematurely due to transfusion-related iron overload. As per the current guidelines, the optimal chelation of iron cannot be achieved in many patients, even with two iron chelators at their maximum therapeutic doses. Here, we evaluate the efficacy and safety of triple combination treatment with deferoxamine, deferasirox and deferiprone over dual combination of deferoxamine and deferasirox on iron chelation in patients with transfusion-dependent ß-thalassaemia with very high iron overload. METHODS AND ANALYSIS: This is a single-centre, open-label, randomised, controlled clinical trial conducted at the Adult and Adolescent Thalassaemia Centre of Colombo North Teaching Hospital, Ragama, Sri Lanka. Patients with haematologically and genetically confirmed transfusion-dependent ß-thalassaemia are enrolled and randomised into intervention or control groups. The intervention arm will receive a combination of oral deferasirox, oral deferiprone and subcutaneous deferoxamine for 6 months. The control arm will receive the combination of oral deferasirox and subcutaneous deferoxamine for 6 months. Reduction in iron overload, as measured by a reduction in the serum ferritin after completion of the treatment, will be the primary outcome measure. Reduction in liver and cardiac iron content as measured by T2* MRI and the side effect profile of trial medications are the secondary outcome measures. ETHICS AND DISSEMINATION: Ethical approval for the study has been obtained from the Ethics Committee of the Faculty of Medicine, University of Kelaniya (Ref. P/06/02/2023). The trial results will be disseminated in scientific publications in reputed journals. TRIAL REGISTRATION NUMBER: The trial is registered in the Sri Lanka Clinical Trials Registry (Ref: SLCTR/2023/010).


Iron Overload , beta-Thalassemia , Adult , Adolescent , Humans , Deferasirox/therapeutic use , Deferiprone/therapeutic use , Deferoxamine/therapeutic use , beta-Thalassemia/complications , beta-Thalassemia/drug therapy , Benzoates/therapeutic use , Benzoates/adverse effects , Triazoles/adverse effects , Pyridones , Iron Overload/drug therapy , Iron Overload/etiology , Iron Chelating Agents/adverse effects , Iron/therapeutic use , Randomized Controlled Trials as Topic
5.
Blood Transfus ; 22(1): 75-85, 2024 Jan.
Article En | MEDLINE | ID: mdl-37146300

BACKGROUND: In transfusion-dependent thalassemia patients who started regular transfusions in early childhood, we prospectively and longitudinally evaluated the efficacy on pancreatic iron of a combined deferiprone (DFP) + desferrioxamine (DFO) regimen versus either oral iron chelator as monotherapy over a follow-up of 18 months. MATERIALS AND METHODS: We selected patients consecutively enrolled in the Extension-Myocardial Iron Overload in Thalassemia network who received a combined regimen of DFO+DFP (No.=28) or DFP (No.=61) or deferasirox (DFX) (No.=159) monotherapy between the two magnetic resonance imaging scans. Pancreatic iron overload was quantified by the T2* technique. RESULTS: At baseline no patient in the combined treatment group had a normal global pancreas T2* (≥26 ms). At follow-up the percentage of patients who maintained a normal pancreas T2* was comparable between the DFP and DFX groups (57.1 vs 70%; p=0.517).Among the patients with pancreatic iron overload at baseline, global pancreatic T2* values were significantly lower in the combined DFO+DFP group than in the DFP or DFX groups. Since changes in global pancreas T2* values were negatively correlated with baseline pancreas T2* values, the percent changes in global pancreas T2* values, normalized for the baseline values, were considered. The percent changes in global pancreas T2* values were significantly higher in the combined DFO+DFP group than in either the DFP (p=0.036) or DFX (p=0.030) groups. DISCUSSION: In transfusion-dependent patients who started regular transfusions in early childhood, combined DFP+DFO was significantly more effective in reducing pancreatic iron than was either DFP or DFX.


Iron Overload , Thalassemia , beta-Thalassemia , Humans , Child, Preschool , Iron/therapeutic use , Deferasirox , Deferiprone/therapeutic use , Deferoxamine/therapeutic use , Iron Chelating Agents/therapeutic use , Pyridones/therapeutic use , beta-Thalassemia/diagnostic imaging , beta-Thalassemia/drug therapy , Benzoates/therapeutic use , Triazoles/therapeutic use , Drug Therapy, Combination , Iron Overload/diagnostic imaging , Iron Overload/drug therapy , Iron Overload/etiology , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Pancreas/diagnostic imaging
6.
Auris Nasus Larynx ; 51(2): 271-275, 2024 Apr.
Article En | MEDLINE | ID: mdl-37903661

OBJECTIVE: The role of iron chelation in causing hearing loss (HL) is still unclear. The present study assessed the prevalence of HL among transfusion-dependent thalassemia (TDT) patients who underwent audiological follow-up over a 20-year period. METHODS: We retrospectively analyzed clinical records and audiological tests from January 1990 (T0) to December 2022 (T22) of a group of TDT patients who received iron chelation therapy with deferoxamine (DFO), deferiprone (DFP) or deferasirox (DFX), in monotherapy or as part of combination therapy. RESULTS: A total of 42 adult TDT patients (18 male, 24 female; age range: 41-55 years; mean age: 49.2 ± 3.7 years) were included in the study. At the T22 assessment, the overall prevalence of sensorineural HL was 23.8 % (10/42). When patients were stratified into two groups, with and without ototoxicity, no differences were observed for sex, age, BMI, creatinine level, pre-transfusional hemoglobin, start of transfusions, cardiac or hepatic T2 MRI; only ferritin serum values and duration of chelation were significantly higher (p = 0.02 and p = 0.01, respectively) in patients with hearing impairment in comparison to those with normal hearing. CONCLUSION: This study with long-term follow-up suggests that iron chelation therapy might induce ototoxicity; therefore, a long and accurate audiological follow-up should be performed in TDT patients.


Iron Overload , Ototoxicity , beta-Thalassemia , Adult , Humans , Male , Female , Middle Aged , beta-Thalassemia/complications , beta-Thalassemia/drug therapy , beta-Thalassemia/epidemiology , Deferasirox/therapeutic use , Deferiprone/therapeutic use , Deferoxamine/therapeutic use , Iron Overload/drug therapy , Iron Overload/epidemiology , Iron Overload/etiology , Follow-Up Studies , Retrospective Studies , Ototoxicity/complications , Ototoxicity/drug therapy , Benzoates/therapeutic use , Triazoles/therapeutic use , Pyridones/therapeutic use , Iron Chelating Agents/therapeutic use , Iron/therapeutic use , Hearing
7.
Int J Mol Sci ; 24(23)2023 Nov 25.
Article En | MEDLINE | ID: mdl-38069073

The design of clinical protocols and the selection of drugs with appropriate posology are critical parameters for therapeutic outcomes. Optimal therapeutic protocols could ideally be designed in all diseases including for millions of patients affected by excess iron deposition (EID) toxicity based on personalised medicine parameters, as well as many variations and limitations. EID is an adverse prognostic factor for all diseases and especially for millions of chronically red-blood-cell-transfused patients. Differences in iron chelation therapy posology cause disappointing results in neurodegenerative diseases at low doses, but lifesaving outcomes in thalassemia major (TM) when using higher doses. In particular, the transformation of TM from a fatal to a chronic disease has been achieved using effective doses of oral deferiprone (L1), which improved compliance and cleared excess toxic iron from the heart associated with increased mortality in TM. Furthermore, effective L1 and L1/deferoxamine combination posology resulted in the complete elimination of EID and the maintenance of normal iron store levels in TM. The selection of effective chelation protocols has been monitored by MRI T2* diagnosis for EID levels in different organs. Millions of other iron-loaded patients with sickle cell anemia, myelodysplasia and haemopoietic stem cell transplantation, or non-iron-loaded categories with EID in different organs could also benefit from such chelation therapy advances. Drawbacks of chelation therapy include drug toxicity in some patients and also the wide use of suboptimal chelation protocols, resulting in ineffective therapies. Drug metabolic effects, and interactions with other metals, drugs and dietary molecules also affected iron chelation therapy. Drug selection and the identification of effective or optimal dose protocols are essential for positive therapeutic outcomes in the use of chelating drugs in TM and other iron-loaded and non-iron-loaded conditions, as well as general iron toxicity.


Iron Overload , beta-Thalassemia , Humans , Deferiprone/therapeutic use , Deferoxamine/therapeutic use , Pyridones/adverse effects , Iron Chelating Agents/adverse effects , Iron Overload/etiology , Iron Overload/chemically induced , Chelation Therapy/methods , Iron/metabolism , beta-Thalassemia/drug therapy , beta-Thalassemia/complications , Drug Therapy, Combination
8.
Medicine (Baltimore) ; 102(41): e35455, 2023 Oct 13.
Article En | MEDLINE | ID: mdl-37832083

This century has seen a revolution the management of beta-thalassemia major. Over a 12-year period to 2016, we aimed to analyze the benefits of such advances. In 209 patients, independent of the chelation regimen, ferritin, cardiac T2* and liver iron concentration changes were evaluated. We defined chelation success (ChS) as no iron load in the heart and acceptable levels in the liver. Over 3 early magnetic resonance imagings, the same parameters were assessed in 2 subgroups, the only 2 that had sufficient patients continuing on 1 regimen and for a significant period of time, 1 on deferrioxamine (low iron load patients n = 41, Group A) and 1 on deferoxamine-deferiprone (iron overloaded n = 60, Group B). Finally, 28 deaths and causes were compared to those of an earlier period. The 209 patients significantly optimized those indices, while the number of patients with chelation success, increased from 6% to 51% (P < .0001). In group A, ChS after about 8 years increased from 21 to 46% (P = .006), while in Group B, from 0% to 60% (P < .001) after about 7 years. Deaths over the 2 periods showed significant reduction. Combined clearance of cardiac and liver iron (ChS) is feasible and should become the new target for all patients. This requires, serial magnetic resonance imagings and often prolonged intensified chelation for patients.


Iron Chelating Agents , beta-Thalassemia , Humans , Iron Chelating Agents/therapeutic use , beta-Thalassemia/drug therapy , Deferoxamine/therapeutic use , Deferiprone/therapeutic use , Chelation Therapy , Pyridones/therapeutic use , Iron/therapeutic use , Liver/diagnostic imaging
9.
Ann N Y Acad Sci ; 1529(1): 33-41, 2023 11.
Article En | MEDLINE | ID: mdl-37594980

Combination chelation therapies are considered in transfusion-dependent thalassemia patients for whom monotherapy regimens have failed to achieve iron balance or intensification of iron chelation therapy is required for the rapid reduction of excess iron to avoid permanent organ damage. Combination chelation may provide a more flexible approach for individualizing chelation therapy, thereby improving tolerability, adherence, and quality of life. In principle, iron chelators can be combined with an infinite number of dosing regimens; these involve simultaneous or sequential exposure to the chelators on the same day or alternating the drugs on different days. Clinical studies have established the safety and efficacy of chelation combinations. However, real-life data with combination therapies indicate the significance of compliance for a meaningful reduction in iron overload compared to monotherapies.


Chelation Therapy , Iron Overload , Humans , Deferasirox/therapeutic use , Deferoxamine/therapeutic use , Deferiprone/therapeutic use , Quality of Life , Benzoates/adverse effects , Triazoles , Pyridones , Iron Chelating Agents/therapeutic use , Iron Chelating Agents/adverse effects , Iron Overload/drug therapy , Iron Overload/chemically induced , Iron , Drug Therapy, Combination
11.
Transfus Apher Sci ; 62(3): 103702, 2023 Jun.
Article En | MEDLINE | ID: mdl-37055329

Drug-induced nephrolithiasis can arise from insoluble components within medications or crystallization of metabolites due to changes in metabolism and urinary pH. The connection between drugs utilized for iron chelation therapy (ICT) and nephrolithiasis is not well understood. In this report, we describe two pediatric patients diagnosed with nephrolithiasis while undergoing treatment with the chelating agents deferasirox, deferiprone, and deferoxamine for iron overload secondary to repeat blood transfusion.


Iron Overload , Nephrolithiasis , beta-Thalassemia , Humans , Child , Chelation Therapy/adverse effects , Iron Chelating Agents/adverse effects , Deferasirox/adverse effects , Deferiprone/therapeutic use , Deferoxamine/adverse effects , Benzoates/adverse effects , Triazoles , Iron Overload/drug therapy , Iron Overload/etiology , Nephrolithiasis/chemically induced , Nephrolithiasis/complications , Nephrolithiasis/drug therapy , Iron/therapeutic use , beta-Thalassemia/therapy
12.
BMC Neurol ; 23(1): 134, 2023 Mar 31.
Article En | MEDLINE | ID: mdl-37004026

BACKGROUND: Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a rare and devastating disease caused by pathogenic mutations in C19orf12 gene. MPAN is characterized by pathological iron accumulation in the brain and fewer than 100 cases of MPAN have been described. Although the diagnosis of MPAN has achieved a great breakthrough with the application of the whole exome gene sequencing technology, the therapeutic effect of iron chelation therapy in MPAN remains controversial. CASE PRESENTATION: We reported that two sisters from the same family diagnosed with MPAN had dramatically different responses to deferiprone (DFP) treatment. The diagnosis of MPAN were established based on typical clinical manifestations, physical examination, brain magnetic resonance imaging (MRI), cerebrospinal fluid analysis (CSF) and gene sequencing results. The clinical presentations of the two sisters with MPAN due to novel gene locus mutations were similar to those previously reported. There is no other difference in basic information except that the proband had a later onset age and fertility history. Both the proband and his second sister were treated with deferiprone (DFP), but they had dramatically different responses to the treatment. The proband's condition deteriorated sharply after treatment with DFP including psychiatric symptoms and movement disorders. However, the second sister of the proband became relatively stable after receiving the DFP treatment. After four years of follow-up, the patient still denies any new symptoms of neurological deficits. CONCLUSION: The findings of this study enriched the MPAN gene database and indicated that DFP might ameliorate symptom progression in patients without severe autonomic neuropsychiatric impairment at the early stage of the disease.


Mitochondrial Proteins , Neurodegenerative Diseases , Humans , Deferiprone/therapeutic use , Mitochondrial Proteins/genetics , Neurodegenerative Diseases/genetics , Mutation/genetics , Membrane Proteins/genetics , Iron
13.
Hematol Oncol Clin North Am ; 37(2): 379-391, 2023 04.
Article En | MEDLINE | ID: mdl-36907610

Conventional therapy for severe thalassemia includes regular red cell transfusions and iron chelation therapy to prevent and treat complications of iron overload. Iron chelation is very effective when appropriately used, but inadequate iron chelation therapy continues to contribute to preventable morbidity and mortality in transfusion-dependent thalassemia. Factors that contribute to suboptimal iron chelation include poor adherence, variable pharmacokinetics, chelator adverse effects, and difficulties with precise monitoring of response. The regular assessment of adherence, adverse effects, and iron burden with appropriate treatment adjustments is necessary to optimize patient outcomes.


Iron Overload , Thalassemia , beta-Thalassemia , Humans , beta-Thalassemia/therapy , Iron Chelating Agents/therapeutic use , Deferiprone/therapeutic use , Deferoxamine/therapeutic use , Pyridones/therapeutic use , Iron Overload/etiology , Thalassemia/therapy , Iron/therapeutic use
15.
Yeast ; 40(3-4): 143-151, 2023 03.
Article En | MEDLINE | ID: mdl-36755518

In the absence of YFH1, the yeast ortholog of the human FXN gene, budding yeast Saccharomyces cerevisiae experience similar problems to those of cells with Friedreich's ataxia (FRDA). The comparable phenotypic traits consist of impaired respiration, problems in iron homeostasis, decreased oxidative stress tolerance, and diminished iron-sulfur cluster synthesis, rendering yeast of potential use in FRDA modeling and drug trials. Deferiprone, an iron chelator, is one of the long-term studied potential drugs for FRDA, whereas metformin is a biguanide prescribed to treat type 2 diabetes. In the present study, the effects of deferiprone and metformin treatment on the yeast FRDA model are explored via RNA-sequencing analyses. The comparative inquiry of transcriptome data reveals new promising roles for metformin in FRDA treatment since deferiprone and metformin treatments produce overlapping transcriptional and phenotypic responses in YFH1Δ cells. The results revealed that both deferiprone and metformin treatment does not rescue aerobic respiration in YFH1Δ cells, but they alleviate the FRDA phenotype probably by triggering the retrograde mitochondria-to-nucleus signaling.


Diabetes Mellitus, Type 2 , Friedreich Ataxia , Metformin , Humans , Saccharomyces cerevisiae/genetics , Deferiprone/pharmacology , Deferiprone/therapeutic use , Friedreich Ataxia/drug therapy , Friedreich Ataxia/genetics , Metformin/pharmacology , Metformin/therapeutic use , Iron
16.
Eur J Haematol ; 110(5): 490-497, 2023 May.
Article En | MEDLINE | ID: mdl-36708354

Iron overload is a pathological condition resulting from a congenital impairment of its regulation, increased intestinal iron absorption secondary to bone marrow erythroid hyperplasia, or a chronic transfusional regimen. In normal conditions, intracellular and systemic mechanisms contribute to maintaining iron balance. When this complex homeostatic mechanism fails, an iron overload could be present. Detecting an iron overload is not easy. The gold standard remains the liver biopsy, even if it is invasive and dangerous. Identifying iron using noninvasive techniques allowed a better understanding of the rate of iron overload in different organs, with a low risk for the patient. Estimating serum ferritin (mg/L) is the easiest and, consequently, the most employed diagnostic tool for assessing body iron stores, even if it could be a not specific method. The most common hematological causes of iron overload are myelodysplastic syndromes, sickle cell disease, and thalassemia. In all of these conditions, three drugs have been approved for the treatment of iron overload: deferiprone, deferoxamine, and deferasirox. These chelators have been demonstrated to help lower tissue iron levels and prevent iron overload complications, improving event-free survival (EFS). Nowadays, the decision to start chelation and which chelator to choose remains the joint decision of the clinician and patient.


Chelation Therapy , Iron Overload , Humans , Chelation Therapy/adverse effects , Iron Chelating Agents/therapeutic use , Deferasirox/therapeutic use , Deferiprone/therapeutic use , Deferoxamine/therapeutic use , Pyridones/therapeutic use , Benzoates/therapeutic use , Triazoles , Iron Overload/diagnosis , Iron Overload/drug therapy , Iron Overload/etiology , Iron
17.
Transfus Clin Biol ; 30(1): 69-74, 2023 Feb.
Article En | MEDLINE | ID: mdl-35878782

OBJECTIVES: Iron overload is a common complication experienced by transfusion-dependent children with hemoglobin disorders. Chelators such as deferasirox (DFX) and deferiprone (DFP) are effective in overcoming this problem. We conducted this systematic review and meta-analysis to evaluate the effectiveness of DFX compared to DFP in treating iron overload amongst pediatric patients with hemoglobin disorders. MATERIAL AND METHODS: PubMed and Cochrane Central were searched from their inception until Dec 21 2021, for randomized clinical trials (RCTs) and observational studies, which assessed the efficacy of DFX compared to DFP in the treatment of inherited hemoglobin disorders. The outcomes of interest included myocardial iron concentration (MRI T2*) at the end of the trial and change in mean serum ferritin (SF) levels at the 6 and 12 months mark. Weighted mean differences (WMDs) with their corresponding 95% confidence intervals (CIs) were calculated for continuous outcomes using random effects model. RESULTS: A total of 5 studies comprising 607 children were included. The results of our analysis revealed no significant difference between DFX and DFP in MRI T2* at the end of treatment (WMD: -0.92; 95% CI [-3.35, 1.52]; p = 0.46; I2 = 0). Moreover, there has been no significant difference noted in SF levels at both 6 months (WMD: 97.31; 95% CI [-236.16, 430.77]; p = 0.57; I2 = 0) and 12 months (WMD: 46.99; 95% CI [-191.42, 285.40]; p = 0.70; I2 = 0) respectively. CONCLUSION: Our analysis shows no significant difference between the efficacy of DFX and DFP in the management of iron overload in children with inherited blood disorders. Future large-scale clinical trials are required to further validate our results.


Hemoglobinopathies , Iron Overload , beta-Thalassemia , Humans , Child , Iron/therapeutic use , Iron/metabolism , Deferasirox/therapeutic use , Deferiprone/therapeutic use , Iron Chelating Agents/therapeutic use , Benzoates/therapeutic use , Triazoles/therapeutic use , Pyridones/therapeutic use , Iron Overload/drug therapy , Iron Overload/etiology , beta-Thalassemia/complications , beta-Thalassemia/drug therapy , Hemoglobinopathies/complications , Hemoglobinopathies/drug therapy , Ferritins
18.
Br J Pharmacol ; 180(2): 214-234, 2023 01.
Article En | MEDLINE | ID: mdl-36102035

BACKGROUND AND PURPOSE: Traumatic brain injury (TBI) remains a leading cause of mortality and morbidity in young adults. The role of iron in potentiating neurodegeneration following TBI has gained recent interest as iron deposition has been detected in the injured brain in the weeks to months post-TBI, in both the preclinical and clinical setting. A failure in iron homeostasis can lead to oxidative stress, inflammation and excitotoxicity; and whether this is a cause or consequence of the long-term effects of TBI remains unknown. EXPERIMENTAL APPROACH: We investigated the role of iron and the effect of therapeutic intervention using a brain-permeable iron chelator, deferiprone, in a controlled cortical impact mouse model of TBI. An extensive assessment of cognitive, motor and anxiety/depressive outcome measures were examined, and neuropathological and biochemical changes, over a 3-month period post-TBI. KEY RESULTS: Lesion volume was significantly reduced at 3 months, which was preceded by a reduction in astrogliosis, microglia/macrophages and preservation of neurons in the injured brain at 2 weeks and/or 1 month post-TBI in mice receiving oral deferiprone. Deferiprone treatment showed significant improvements in neurological severity scores, locomotor/gait performance and cognitive function, and attenuated anxiety-like symptoms post-TBI. Deferiprone reduced iron levels, lipid peroxidation/oxidative stress and altered expression of neurotrophins in the injured brain over this period. CONCLUSION AND IMPLICATIONS: Our findings support a detrimental role of iron in the injured brain and suggest that deferiprone (or similar iron chelators) may be promising therapeutic approaches to improve survival, functional outcomes and quality of life following TBI.


Brain Injuries, Traumatic , Quality of Life , Animals , Mice , Deferiprone/pharmacology , Deferiprone/therapeutic use , Mice, Inbred C57BL , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Iron
19.
N Engl J Med ; 387(22): 2045-2055, 2022 12 01.
Article En | MEDLINE | ID: mdl-36449420

BACKGROUND: Iron content is increased in the substantia nigra of persons with Parkinson's disease and may contribute to the pathophysiology of the disorder. Early research suggests that the iron chelator deferiprone can reduce nigrostriatal iron content in persons with Parkinson's disease, but its effects on disease progression are unclear. METHODS: We conducted a multicenter, phase 2, randomized, double-blind trial involving participants with newly diagnosed Parkinson's disease who had never received levodopa. Participants were assigned (in a 1:1 ratio) to receive oral deferiprone at a dose of 15 mg per kilogram of body weight twice daily or matched placebo for 36 weeks. Dopaminergic therapy was withheld unless deemed necessary for symptom control. The primary outcome was the change in the total score on the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS; range, 0 to 260, with higher scores indicating more severe impairment) at 36 weeks. Secondary and exploratory clinical outcomes at up to 40 weeks included measures of motor and nonmotor disability. Brain iron content measured with the use of magnetic resonance imaging was also an exploratory outcome. RESULTS: A total of 372 participants were enrolled; 186 were assigned to receive deferiprone and 186 to receive placebo. Progression of symptoms led to the initiation of dopaminergic therapy in 22.0% of the participants in the deferiprone group and 2.7% of those in the placebo group. The mean MDS-UPDRS total score at baseline was 34.3 in the deferiprone group and 33.2 in the placebo group and increased (worsened) by 15.6 points and 6.3 points, respectively (difference, 9.3 points; 95% confidence interval, 6.3 to 12.2; P<0.001). Nigrostriatal iron content decreased more in the deferiprone group than in the placebo group. The main serious adverse events with deferiprone were agranulocytosis in 2 participants and neutropenia in 3 participants. CONCLUSIONS: In participants with early Parkinson's disease who had never received levodopa and in whom treatment with dopaminergic medications was not planned, deferiprone was associated with worse scores in measures of parkinsonism than those with placebo over a period of 36 weeks. (Funded by the European Union Horizon 2020 program; FAIRPARK-II ClinicalTrials.gov number, NCT02655315.).


Antiparkinson Agents , Deferiprone , Iron Chelating Agents , Iron , Parkinson Disease , Substantia Nigra , Humans , Deferiprone/administration & dosage , Deferiprone/adverse effects , Deferiprone/pharmacology , Deferiprone/therapeutic use , Iron/analysis , Iron/metabolism , Levodopa/therapeutic use , Neutropenia/chemically induced , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/physiopathology , Iron Chelating Agents/administration & dosage , Iron Chelating Agents/adverse effects , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use , Substantia Nigra/chemistry , Substantia Nigra/diagnostic imaging , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Disease Progression , Double-Blind Method , Administration, Oral , Brain/diagnostic imaging , Brain Chemistry , Dopamine Agents/administration & dosage , Dopamine Agents/adverse effects , Dopamine Agents/pharmacology , Dopamine Agents/therapeutic use , Antiparkinson Agents/administration & dosage , Antiparkinson Agents/adverse effects , Antiparkinson Agents/pharmacology , Antiparkinson Agents/therapeutic use
20.
Front Biosci (Elite Ed) ; 14(3): 18, 2022 07 12.
Article En | MEDLINE | ID: mdl-36137990

Beta thalassaemia major (TM), a potentially fatal haemoglobinopathy, has transformed from a fatal to a chronic disease in the last 30 years following the introduction of effective, personalised iron chelation protocols, in particular the use of oral deferiprone, which is most effective in the removal of excess iron from the heart. This transition in TM has been achieved by the accessibility to combination therapy with the other chelating drugs deferoxamine and deferasirox but also therapeutic advances in the treatment of related co-morbidities. The transition and design of effective personalised chelation protocols was facilitated by the development of new non-invasive diagnostic techniques for monitoring iron removal such as MRI T2*. Despite this progress, the transition in TM is mainly observed in developed countries, but not globally. Similarly, potential cures of TM with haemopoietic stem cell transplantation and gene therapy are available to selected TM patients but potentially carry high risk of toxicity. A global strategy is required for the transition efforts to become available for all TM patients worldwide. The same strategy could also benefit many other categories of transfusional iron loaded patients including other thalassaemias, sickle cell anaemia, myelodysplasia and leukaemia patients.


Iron Chelating Agents , Thalassemia , Benzoates/adverse effects , Deferasirox , Deferiprone/therapeutic use , Deferoxamine/adverse effects , Humans , Iron , Iron Chelating Agents/adverse effects , Iron Chelating Agents/therapeutic use , Pyridones/adverse effects , Risk Assessment , Thalassemia/chemically induced , Thalassemia/drug therapy , Triazoles/adverse effects , Triazoles/therapeutic use
...